24/35 RAPPORT D'ESSAIS N° AC12-26039707-Rev01

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R D'UNE PAROI MAÇONNÉE AVEC ET SANS COMPLEXE DE DOUBLAGE

Essais 9 et 10 Date 18/09/12 Poste EPSILON

<u> 1D13</u>

DEMANDEUR BOUYER LEROUX

FABRICANTS BOUYER LEROUX (paroi support)

EFISOL (complexe de doublage)

PAROI MAÇONNÉE Mur en briques creuses de terre cuite BGV THERMO + d'épaisseur

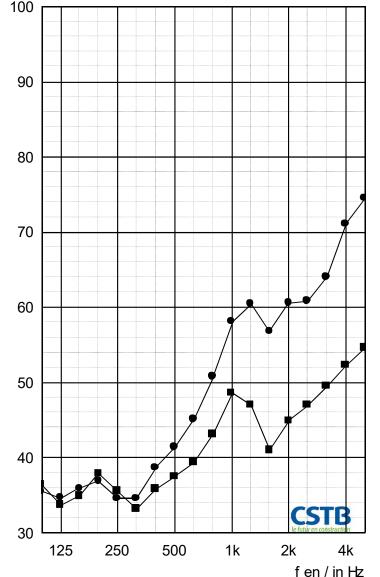
200 mm avec enduit monocouche 15 mm sur une face

CONFIGURATION Complexe de doublage SIS REVE 100mm + BA13.

APTITUDE À L'EMPLOI Sous avis technique n° 9/08-865*01 Add

CARACTÉRISTIQUES PRINCIPALES

Dimensions de l'ouverture d'essai en mm : 4180 x 2470


Épaisseur totale en mm : 325 Masse surfacique du mur support en kg/m² : 180

RÉSULTATS

• Essai : paroi maçonnée avec le complexe de doublage

■ Essai : paroi maçonnée seule

R en / in dB

Code	-=-	-•-
f	R	R
100	36,4	35,5
125	33,7	34,7
160	34,9	35,9
200	37,9	36,9
250	35,6	34,6
315	33,2	34,6
400	35,8	38,7
500	37,5	41,4
630	39,4	45, 1
800	43, 1	50,8
1k	48,6	58, 1
1,25k	47,0	60,4
1,6k	41,0	56,8
2k	44,9	60,6
2,5k	47,0	60,8
3,15k	49,5	64,0
4k	52,3	71,1
5k	54,6	74,5
Hz	dB	dB

(*): valeur corrigée/corrected value. (+): limite de poste/station limit

-	R_w (C;C _{tr}) = 42(0; Pour information / For information: $R_x = R_w + C = 42 \text{ dB}$	-2) dB R _{Au} = R _w +C _u = 40 dB
-	R_w (C;C _{tr}) = 47(-1 Pour information / For information: $R_x = R_w + C = 46 \text{ dB}$;-4) dB R _{xv} = R _w +C _v = 43 dB